Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 242
Filter
2.
Lancet Diabetes Endocrinol ; 12(4): 277-284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514241

ABSTRACT

Stress hyperglycaemia, hypoglycaemia, and diabetes are common in critically ill patients and related to clinical endpoints. To avoid complications related to hypoglycaemia and hyperglycaemia, it is recommended to start insulin therapy for the majority of critically ill patients with persistent blood glucose concentrations higher than 10·0 mmol/L (>180 mg/dL), targeting a range of 7·8-10·0 mmol/L (140-180 mg/dL). However, management and evidence-based targets for blood glucose control are under debate, particularly for patients with diabetes. Recent randomised controlled clinical trials now challenge current recommendations. In this Personal View, we aim to highlight these developments and the important differences between critically ill patients with and without diabetes, taking into account the considerable heterogeneity in this patient group. We critically discuss evidence from prospective randomised controlled trials and observational studies on the safety and efficacy of glycaemic control, specifically in the context of patients with diabetes in intensive care units.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Hypoglycemia , Humans , Blood Glucose , Hypoglycemic Agents/therapeutic use , Glycemic Control , Critical Illness/therapy , Prospective Studies , Diabetes Mellitus/drug therapy , Insulin/therapeutic use , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Hyperglycemia/prevention & control , Hyperglycemia/drug therapy , Intensive Care Units
3.
J Clin Endocrinol Metab ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38487818

ABSTRACT

OBJECTIVE: Breastfeeding is associated with a reduced maternal risk for cardiovascular diseases. Since the underlying mechanisms are still poorly understood, we here examined the impact of breastfeeding on the plasmatic coagulation system in women with and without history of gestational diabetes mellitus (GDM). METHODS: 76 participants of the German Gestational Diabetes Study (PREG; NCT04270578) were examined 14 [interquartile range: 12-26] months after delivery with a 5-point oral glucose tolerance test. Global coagulation tests, prothrombotic coagulation proteins (FII/FVII/FVIII/FIX), antithrombotic proteins (antithrombin, protein C/S) and endothelial markers (von-Willebrand-factor and PAI-1) were determined. The Framingham Risk Score was used to estimate the 10-year cardiovascular risk. The impact of breastfeeding duration on coagulation was analyzed using multivariable linear models. RESULTS: The mean duration of breastfeeding was 11 [7-14] months. Overall, longer duration of breastfeeding was associated with lower cardiovascular risk (Framingham Risk Score, p=0.05) and was negatively associated with FIX (p=0.018). We detected an interaction between previous GDM and breastfeeding duration for FIX (pInteraction=0.017): only in women with GDM history was the duration of breastfeeding negatively associated with FIX activity (p=0.016). This association persisted in statistical models adjusted for age, body-mass index, insulin sensitivity, and C-reactive protein. The duration of breastfeeding was not associated with anticoagulant proteins and endothelial markers. CONCLUSION: Longer duration of breastfeeding is associated with lower cardiovascular risk and an improved coagulation profile. Women with GDM history appear to benefit particularly from prolonged breastfeeding.

4.
Mol Metab ; 82: 101905, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431218

ABSTRACT

OBJECTIVE: Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS: Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS: In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS: KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Noncommunicable Diseases , Serpins , Humans , Mice , Animals , Glucose/metabolism , Insulin Resistance/physiology , Serpins/genetics , Overweight , Insulin/metabolism , Obesity/metabolism , Mice, Transgenic , Diet, High-Fat/adverse effects , Homeostasis , Weight Loss , RNA, Messenger/metabolism
5.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405878

ABSTRACT

Objective: Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in the brain which are vital for behavior, e.g. ingestion and metabolic control. To date, no study has investigated whether brain responses to food cues in children are associated with peripheral insulin sensitivity. Methods: We included 53 children (36 girls) between the age of 7-11 years, who underwent an oral Glucose Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task-based activity and functional connectivity (FC) between children with low and high ISI, adjusted for age and BMIz. Results: Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the insular FC. No differences were found on whole-brain food-cue reactivity. Conclusions: Children with low peripheral insulin sensitivity showed differences in food cue evoked response particularly in insula functional connectivity. These differences might influence eating behavior and future risk of developing diabetes.

7.
Kidney Blood Press Res ; 49(1): 124-134, 2024.
Article in English | MEDLINE | ID: mdl-38228104

ABSTRACT

INTRODUCTION: SGLT2 inhibitors are used to reduce the risk of progression of chronic kidney disease (CKD). In patients with type 2 diabetes, they have been found to reduce extracellular volume. Given the high prevalence of extracellular volume expansion and overhydration (OH) in CKD, we investigated whether SGLT2 inhibitors might correct these disturbances in CKD patients. METHODS: CKD patients who started treatment with an SGLT2 inhibitor were investigated in this prospective observational study for 6 months. Body composition and fluid status were measured by bioimpedance spectroscopy. In addition, spot urine samples were analyzed for albuminuria, glucosuria, and urinary aprotinin-sensitive serine protease activity. RESULTS: Forty-two patients (29% with diabetic/hypertensive CKD, 31% with IgA nephropathy; 88% dapagliflozin 10 mg, 10% dapagliflozin 5 mg, 2% empagliflozin 20 mg; median eGFR 46 mL/min/1.73 m2 and albuminuria 1,911 mg/g creatinine) participated in the study. Median glucosuria increased to 14 (10-19) g/g creatinine. At baseline, patients displayed OH with +0.4 (-0.2 to 2.2) L/1.73 m2, which decreased by 0.5 (0.1-1.2) L/1.73 m2 after 6 months. Decrease of OH correlated with higher OH at BL, decrease of albuminuria, glucosuria, and urinary aprotinin-sensitive protease activity. Adipose tissue mass was not significantly reduced after 6 months. CONCLUSION: SGLT2 inhibitors reduce OH in patients with CKD, which is pronounced in the presence of high albuminuria, glucosuria, and urinary aprotinin-sensitive protease activity.


Subject(s)
Benzhydryl Compounds , Glucosides , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/urine , Male , Female , Middle Aged , Aged , Longitudinal Studies , Glucosides/therapeutic use , Glucosides/pharmacology , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology , Prospective Studies , Serine Proteases , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications
9.
Diabetes Care ; 47(3): 362-370, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38151465

ABSTRACT

OBJECTIVE: To explore whether insulin resistance, assessed by estimated glucose disposal rate (eGDR), is associated with cardiorenal risk and whether it modifies finerenone efficacy. RESEARCH DESIGN AND METHODS: In FIDELITY (N = 13,026), patients with type 2 diabetes, either 1) urine albumin-to-creatinine ratio (UACR) of ≥30 to <300 mg/g and estimated glomerular filtration rate (eGFR) of ≥25 to ≤90 mL/min/1.73 m2 or 2) UACR of ≥300 to ≤5,000 mg/g and eGFR of ≥25 mL/min/1.73 m2, who also received optimized renin-angiotensin system blockade, were randomized to finerenone or placebo. Outcomes included cardiovascular (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure) and kidney (kidney failure, sustained decrease of ≥57% in eGFR from baseline, or renal death) composites. eGDR was calculated using waist circumference, hypertension status, and glycated hemoglobin for 12,964 patients. RESULTS: Median eGDR was 4.1 mg/kg/min. eGDR

Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Insulins , Naphthyridines , Renal Insufficiency, Chronic , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Renal Insufficiency, Chronic/complications , Glucose/therapeutic use , Insulins/therapeutic use
10.
Lancet Diabetes Endocrinol ; 12(2): 119-131, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142707

ABSTRACT

BACKGROUND: Heterogeneity in type 2 diabetes can be represented by a tree-like graph structure by use of reversed graph-embedded dimensionality reduction. We aimed to examine whether this approach can be used to stratify key pathophysiological components and diabetes-related complications during longitudinal follow-up of individuals with recent-onset type 2 diabetes. METHODS: For this cohort analysis, 927 participants aged 18-69 years from the German Diabetes Study (GDS) with recent-onset type 2 diabetes were mapped onto a previously developed two-dimensional tree based on nine simple clinical and laboratory variables, residualised for age and sex. Insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, insulin secretion was assessed by intravenous glucose tolerance test, hepatic lipid content was assessed by 1 H magnetic resonance spectroscopy, serum interleukin (IL)-6 and IL-18 were assessed by ELISA, and peripheral and autonomic neuropathy were assessed by functional and clinical measures. Participants were followed up for up to 16 years. We also investigated heart failure and all-cause mortality in 794 individuals with type 2 diabetes undergoing invasive coronary diagnostics from the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort. FINDINGS: There were gradients of clamp-measured insulin sensitivity (both dimensions: p<0·0001) and insulin secretion (pdim1<0·0001, pdim2=0·00097) across the tree. Individuals in the region with the lowest insulin sensitivity had the highest hepatic lipid content (n=205, pdim1<0·0001, pdim2=0·037), pro-inflammatory biomarkers (IL-6: n=348, pdim1<0·0001, pdim2=0·013; IL-18: n=350, pdim1<0·0001, pdim2=0·38), and elevated cardiovascular risk (nevents=143, pdim1=0·14, pdim2<0·00081), whereas individuals positioned in the branch with the lowest insulin secretion were more prone to require insulin therapy (nevents=85, pdim1=0·032, pdim2=0·12) and had the highest risk of diabetic sensorimotor polyneuropathy (nevents=184, pdim1=0·012, pdim2=0·044) and cardiac autonomic neuropathy (nevents=118, pdim1=0·0094, pdim2=0·06). In the LURIC cohort, all-cause mortality was highest in the tree branch showing insulin resistance (nevents=488, pdim1=0·12, pdim2=0·0032). Significant gradients differentiated individuals having heart failure with preserved ejection fraction from those who had heart failure with reduced ejection fraction. INTERPRETATION: These data define the pathophysiological underpinnings of the tree structure, which has the potential to stratify diabetes-related complications on the basis of routinely available variables and thereby expand the toolbox of precision diabetes diagnosis. FUNDING: German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, European Community, German Research Foundation, and Schmutzler Stiftung.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 2 , Heart Failure , Insulin Resistance , Humans , Interleukin-18 , Prospective Studies , Insulin/therapeutic use , Lipids
11.
Metabolites ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38132868

ABSTRACT

Reduced expression of the plasma membrane citrate transporter SLC13A5, also known as INDY, has been linked to increased longevity and mitigated age-related cardiovascular and metabolic diseases. Citrate, a vital component of the tricarboxylic acid cycle, constitutes 1-5% of bone weight, binding to mineral apatite surfaces. Our previous research highlighted osteoblasts' specialized metabolic pathway facilitated by SLC13A5 regulating citrate uptake, production, and deposition within bones. Disrupting this pathway impairs bone mineralization in young mice. New Mendelian randomization analysis using UK Biobank data indicated that SNPs linked to reduced SLC13A5 function lowered osteoporosis risk. Comparative studies of young (10 weeks) and middle-aged (52 weeks) osteocalcin-cre-driven osteoblast-specific Slc13a5 knockout mice (Slc13a5cKO) showed a sexual dimorphism: while middle-aged females exhibited improved elasticity, middle-aged males demonstrated enhanced bone strength due to reduced SLC13A5 function. These findings suggest reduced SLC13A5 function could attenuate age-related bone fragility, advocating for SLC13A5 inhibition as a potential osteoporosis treatment.

12.
BMC Med ; 21(1): 504, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110950

ABSTRACT

BACKGROUND: Solute carrier family 13 member 5 (SLC13A5) is a Na+-coupled citrate co-transporter that mediates entry of extracellular citrate into the cytosol. SLC13A5 inhibition has been proposed as a target for reducing progression of kidney disease. The aim of this study was to leverage the Mendelian randomization paradigm to gain insight into the effects of SLC13A5 inhibition in humans, towards prioritizing and informing clinical development efforts. METHODS: The primary Mendelian randomization analyses investigated the effect of SLC13A5 inhibition on measures of kidney function, including creatinine and cystatin C-based measures of estimated glomerular filtration rate (creatinine-eGFR and cystatin C-eGFR), blood urea nitrogen (BUN), urine albumin-creatinine ratio (uACR), and risk of chronic kidney disease and microalbuminuria. Secondary analyses included a paired plasma and urine metabolome-wide association study, investigation of secondary traits related to SLC13A5 biology, a phenome-wide association study (PheWAS), and a proteome-wide association study. All analyses were compared to the effect of genetically predicted plasma citrate levels using variants selected from across the genome, and statistical sensitivity analyses robust to the inclusion of pleiotropic variants were also performed. Data were obtained from large-scale genetic consortia and biobanks, with sample sizes ranging from 5023 to 1,320,016 individuals. RESULTS: We found evidence of associations between genetically proxied SLC13A5 inhibition and higher creatinine-eGFR (p = 0.002), cystatin C-eGFR (p = 0.005), and lower BUN (p = 3 × 10-4). Statistical sensitivity analyses robust to the inclusion of pleiotropic variants suggested that these effects may be a consequence of higher plasma citrate levels. There was no strong evidence of associations of genetically proxied SLC13A5 inhibition with uACR or risk of CKD or microalbuminuria. Secondary analyses identified evidence of associations with higher plasma calcium levels (p = 6 × 10-13) and lower fasting glucose (p = 0.02). PheWAS did not identify any safety concerns. CONCLUSIONS: This Mendelian randomization analysis provides human-centric insight to guide clinical development of an SLC13A5 inhibitor. We identify plasma calcium and citrate as biologically plausible biomarkers of target engagement, and plasma citrate as a potential biomarker of mechanism of action. Our human genetic evidence corroborates evidence from various animal models to support effects of SLC13A5 inhibition on improving kidney function.


Subject(s)
Renal Insufficiency, Chronic , Symporters , Humans , Biomarkers , Calcium , Citrates , Creatinine , Cystatin C , Drug Development , Genome-Wide Association Study , Kidney , Mendelian Randomization Analysis , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/genetics , Symporters/genetics
14.
J Clin Endocrinol Metab ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37988600

ABSTRACT

CONTEXT: Exercise training is known to improve glucose tolerance and reverse insulin resistance in persons with obesity. However, some individuals fail to improve or even decline in their clinical traits following exercise intervention. OBJECTIVE: This study focused on gene expression and DNA methylation signatures in skeletal muscle of low- (LRE) and high-responders (RES) to 8 weeks of supervised endurance training. METHODS: We performed skeletal muscle gene expression and DNA methylation analyses in LRE and RES before and after exercise intervention. Additionally, we applied the least absolute shrinkage and selection operator (LASSO) approach to identify predictive marker genes of exercise outcome. RESULTS: We show that the two groups differ markedly already before the intervention. RES were characterized by lower expression of genes involved in DNA replication and repair, and higher expression of extracellular matrix (ECM) components. LASSO approach identified several novel candidates (e.g. ZCWPW2, FOXRED1, STK40), which have not been previously described in the context of obesity and exercise response. Following the intervention, LRE reacted with expression changes of genes related to inflammation and apoptosis, RES with genes related to mitochondrial function. LRE exhibited significantly higher expression of ECM components compared to RES, suggesting improper remodeling and potential negative effects on insulin sensitivity. Between 45 and 70% of differences in gene expression could be linked to differences in DNA methylation. CONCLUSION: Together, our data offer an insight into molecular mechanisms underlying differences in response to exercise and provide potential novel markers for the success of intervention.

15.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958657

ABSTRACT

MicroRNAs (miRNAs) recently emerged as means of communication between insulin-sensitive tissues to mediate diabetes development and progression, and as such they present a valuable proxy for epigenetic alterations associated with type 2 diabetes. In order to identify miRNA markers for the precursor of diabetes called prediabetes, we applied a translational approach encompassing analysis of human plasma samples, mouse tissues and an in vitro validation system. MiR-652-3p, miR-877-5p, miR-93-5p, miR-130a-3p, miR-152-3p and let-7i-5p were increased in plasma of women with impaired fasting glucose levels (IFG) compared to those with normal fasting glucose and normal glucose tolerance (NGT). Among these, let-7i-5p and miR-93-5p correlated with fasting blood glucose levels. Human data were then compared to miRNome data obtained from islets of Langerhans and adipose tissue of 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and liver fat content. Similar to human plasma, let-7i-5p was increased in adipose tissue and islets of Langerhans of diabetes-prone mice. As predicted by the in silico analysis, overexpression of let-7i-5p in the rat ß-cell line INS-1 832/12 resulted in downregulation of insulin signaling pathway components (Insr, Rictor, Prkcb, Clock, Sos1 and Kcnma1). Taken together, our integrated approach highlighted let-7i-5p as a potential regulator of whole-body insulin sensitivity and a novel marker of prediabetes in women.


Subject(s)
Diabetes Mellitus, Type 2 , Insulins , MicroRNAs , Prediabetic State , Humans , Female , Mice , Rats , Animals , MicroRNAs/metabolism , Prediabetic State/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Obesity/complications , Obesity/genetics , Glucose
16.
Ultraschall Med ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37931914

ABSTRACT

PURPOSE: Insulinoma is a rare tumor of the pancreas that can lead to hypoglycemia. To date, the standard therapy is surgical resection. After the first case report of successful endoscopic ultrasound-guided (EUS) ethanol injection 16 years ago, the need for establishing an alternative treatment method remains unchanged given the high morbidity rates of surgery and its unsuitability in some patients. MATERIALS AND METHODS: Here, we provide retrospective data from 33 insulinoma patients that were treated at our center between 2010 and 2021. Of these, 9 patients were treated with EUS-guided ethanol injection and 24 underwent pancreatic surgery. RESULTS: The ethanol group was older (ethanol: mean ± SE 67.8±11.2 years vs. surgery: 52.3±15.7, p=0.014) with a higher Charlson Comorbidity Index (3.0 (1.0;4.0) vs. 1.0 (0.0;2.0), p=0.008). The lowest glucose values were similar between groups before (ethanol: 2.09±0.17 mmol/l vs. surgery: 1.81±0.08, p=0.158) and after (4.95±0.74 vs. 5.41±0.28, p=0.581) the respective treatments. Complications occurred more frequently in the surgery group (11 % vs. 54 %, p=0.026). One patient after prior partial pancreatectomy died postoperatively. The hospitalization time was significantly shorter in the ethanol group (4.78±0.78 days vs. 19.88±4.07, p<0.001). CONCLUSION: EUS-guided ethanol injection can be similarly effective for the treatment of hyperinsulinemic hypoglycemia compared with pancreatic surgery but seems to be associated with less severe complications. This implies the need for prospective randomized trials in insulinoma patients with a low risk for malignancy.

17.
Metabolites ; 13(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37887386

ABSTRACT

The gut microbiome is of tremendous relevance to human health and disease, so it is a hot topic of omics-driven biomedical research. However, a valid identification of gut microbiota-associated molecules in human blood or urine is difficult to achieve. We hypothesize that bowel evacuation is an easy-to-use approach to reveal such metabolites. A non-targeted and modifying group-assisted metabolomics approach (covering 40 types of modifications) was applied to investigate urine samples collected in two independent experiments at various time points before and after laxative use. Fasting over the same time period served as the control condition. As a result, depletion of the fecal microbiome significantly affected the levels of 331 metabolite ions in urine, including 100 modified metabolites. Dominating modifications were glucuronidations, carboxylations, sulfations, adenine conjugations, butyrylations, malonylations, and acetylations. A total of 32 compounds, including common, but also unexpected fecal microbiota-associated metabolites, were annotated. The applied strategy has potential to generate a microbiome-associated metabolite map (M3) of urine from healthy humans, and presumably also other body fluids. Comparative analyses of M3 vs. disease-related metabolite profiles, or therapy-dependent changes may open promising perspectives for human gut microbiome research and diagnostics beyond analyzing feces.

18.
Diabetes Obes Metab ; 26(1): 191-200, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814928

ABSTRACT

AIM: Investigating the effect of finerenone on liver function, cardiovascular and kidney composite outcomes in patients with chronic kidney disease and type 2 diabetes, stratified by their risk of liver steatosis, inflammation and fibrosis. MATERIALS AND METHODS: Post hoc analysis stratified patients (N = 13 026) by liver fibrosis and enzymes: high risk of steatosis (hepatic steatosis index >36); elevated transaminases [alanine transaminase (ALT) >33 (males) and >25 IU/L (females)]; and fibrosis-4 (FIB-4) index scores >3.25, >2.67 and >1.30. Liver enzymes were assessed by changes in ALT, aspartate aminotransferase and gamma-glutamyl transferase. Composite kidney outcome was defined as onset of kidney failure, sustained estimated glomerular filtration rate decline ≥57% from baseline over ≥4 weeks or kidney death. Composite cardiovascular outcome was defined as cardiovascular death, non-fatal myocardial infarction, non-fatal stroke or hospitalization for heart failure. RESULTS: ALT, aspartate aminotransferase and gamma-glutamyl transferase levels were consistent between treatment groups and remained stable throughout. Finerenone consistently reduced the risk of composite kidney outcome, irrespective of altered liver tests. Higher FIB-4 score was associated with higher incidence rates of composite cardiovascular outcome. Finerenone reduced the risk of composite cardiovascular outcome versus placebo in FIB-4 subgroups by 52% (>3.25), 39% (>2.67) and 24% (>1.30) (p values for interaction = .01, .13 and .03, respectively). CONCLUSIONS: Finerenone has neutral effects on liver parameters in patients with chronic kidney disease and type 2 diabetes. Finerenone showed robust and consistent kidney benefits in patients with altered liver tests, and profound cardiovascular benefits even in patients with higher FIB-4 scores who were at high risk of developing cardiovascular complications.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Renal Insufficiency, Chronic , Male , Female , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Fatty Liver/complications , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Aspartate Aminotransferases/therapeutic use , Transferases/therapeutic use
19.
Diabetes Res Clin Pract ; 204: 110908, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37805000

ABSTRACT

AIMS: Despite guideline-recommended treatments, including renin angiotensin system inhibition, up to 40 % of individuals with type 1 diabetes develop chronic kidney disease (CKD) putting them at risk of kidney failure. Finerenone is approved to reduce the risk of kidney failure in individuals with type 2 diabetes. We postulate that finerenone will demonstrate benefits on kidney outcomes in people with type 1 diabetes. METHODS: FINE-ONE (NCT05901831) is a randomised, placebo-controlled, double-blind phase III trial of 7.5 months' duration in ∼220 adults with type 1 diabetes, urine albumin/creatinine ratio (UACR) of ≥ 200-< 5000 mg/g (≥ 22.6-< 565 mg/mmol) and eGFR of ≥ 25-< 90 ml/min/1.73 m2. RESULTS: The primary endpoint is relative change in UACR from baseline over 6 months. UACR is used as a bridging biomarker (BB), since the treatment effect of finerenone on UACR was associated with its efficacy on kidney outcomes in the type 2 diabetes trials. Based on regulatory authority feedback, UACR can be used as a BB for kidney outcomes to support registration of finerenone in type 1 diabetes, provided necessary criteria are met. Secondary outcomes include incidences of treatment-emergent adverse events, treatment-emergent serious adverse events and hyperkalaemia. CONCLUSIONS: FINE-ONE will evaluate the efficacy and safety of finerenone in type 1 diabetes and CKD. Finerenone could become the first registered treatment for CKD associated with type 1 diabetes in almost 30 years. TRIAL REGISTRATION: ClinicalTrials.gov NCT05901831.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency, Chronic , Renal Insufficiency , Adult , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetic Nephropathies/etiology , Glomerular Filtration Rate , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/complications , Double-Blind Method , Renal Insufficiency/complications , Biomarkers
20.
Lancet Diabetes Endocrinol ; 11(11): 798-810, 2023 11.
Article in English | MEDLINE | ID: mdl-37769677

ABSTRACT

BACKGROUND: Remission of type 2 diabetes can occur as a result of weight loss and is characterised by liver fat and pancreas fat reduction and recovered insulin secretion. In this analysis, we aimed to investigate the mechanisms of weight loss- induced remission in people with prediabetes. METHODS: In this prespecified post-hoc analysis, weight loss-induced resolution of prediabetes in the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS) was assessed, and the results were validated against participants from the Diabetes Prevention Program (DPP) study. For PLIS, between March 1, 2012, and Aug 31, 2016, participants were recruited from eight clinical study centres (including seven university hospitals) in Germany and randomly assigned to receive either a control intervention, a standard lifestyle intervention (ie, DPP-based intervention), or an intensified lifestyle intervention for 12 months. For DPP, participants were recruited from 23 clinical study centres in the USA between July 31, 1996, and May 18, 1999, and randomly assigned to receive either a standard lifestyle intervention, metformin, or placebo. In both PLIS and DPP, only participants who were randomly assigned to receive lifestyle intervention or placebo and who lost at least 5% of their bodyweight were included in this analysis. Responders were defined as people who returned to normal fasting plasma glucose (FPG; <5·6 mmol/L), normal glucose tolerance (<7·8 mmol/L), and HbA1c less than 39 mmol/mol after 12 months of lifestyle intervention or placebo or control intervention. Non-responders were defined as people who had FPG, 2 h glucose, or HbA1c more than these thresholds. The main outcomes for this analysis were insulin sensitivity, insulin secretion, visceral adipose tissue (VAT), and intrahepatic lipid content (IHL) and were evaluated via linear mixed models. FINDINGS: Of 1160 participants recruited to PLIS, 298 (25·7%) had weight loss of 5% or more of their bodyweight at baseline. 128 (43%) of 298 participants were responders and 170 (57%) were non-responders. Responders were younger than non-responders (mean age 55·6 years [SD 9·9] vs 60·4 years [8·6]; p<0·0001). The DPP validation cohort included 683 participants who lost at least 5% of their bodyweight at baseline. Of these, 132 (19%) were responders and 551 (81%) were non-responders. In PLIS, BMI reduction was similar between responders and non-responders (responders mean at baseline 32·4 kg/m2 [SD 5·6] to mean at 12 months 29·0 kg/m2 [4·9] vs non-responders 32·1 kg/m2 [5·9] to 29·2 kg/m2 [5·4]; p=0·86). However, whole-body insulin sensitivity increased more in responders than in non-responders (mean at baseline 291 mL/[min × m2], SD 60 to mean at 12 months 378 mL/[min × m2], 56 vs 278 mL/[min × m2], 62, to 323 mL/[min × m2], 66; p<0·0001), whereas insulin secretion did not differ within groups over time or between groups (responders mean at baseline 175 pmol/mmol [SD 64] to mean at 12 months 163·7 pmol/mmol [60·6] vs non-responders 158·0 pmol/mmol [55·6] to 154·1 pmol/mmol [56·2]; p=0·46). IHL decreased in both groups, without a difference between groups (responders mean at baseline 10·1% [SD 8·7] to mean at 12 months 3·5% [3·9] vs non-responders 10·3% [8·1] to 4·2% [4·2]; p=0·34); however, VAT decreased more in responders than in non-responders (mean at baseline 6·2 L [SD 2·9] to mean at 12 months 4·1 L [2·3] vs 5·7 L [2·3] to 4·5 L [2·2]; p=0·0003). Responders had a 73% lower risk of developing type 2 diabetes than non-responders in the 2 years after the intervention ended. INTERPRETATION: By contrast to remission of type 2 diabetes, resolution of prediabetes was characterised by an improvement in insulin sensitivity and reduced VAT. Because return to normal glucose regulation (NGR) prevents development of type 2 diabetes, we propose the concept of remission of prediabetes in analogy to type 2 diabetes. We suggest that remission of prediabetes should be the primary therapeutic aim in individuals with prediabetes. FUNDING: German Federal Ministry for Education and Research via the German Center for Diabetes Research; the Ministry of Science, Research and the Arts Baden-Württemberg; the Helmholtz Association and Helmholtz Munich; the Cluster of Excellence Controlling Microbes to Fight Infections; and the German Research Foundation.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Prediabetic State , Humans , Middle Aged , Diabetes Mellitus, Type 2/prevention & control , Weight Loss , Body Weight , Glucose , Life Style
SELECTION OF CITATIONS
SEARCH DETAIL